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Abstract. The application of advanced imaging techniques for the ultrasonic 

inspection of inhomogeneous anisotropic materials like austenitic and dissimilar 

welds requires information about acoustic wave propagation through the material, in 

particular travel times between two points in the material. Forward ray tracing is a 

popular approach to determine traveling paths and arrival times but is ill suited for 

inverse problems since a large number of rays have to be computed in order to arrive 

at prescribed end points.  

 In this contribution we discuss boundary value problems for acoustic rays, 

where the ray path between two given points is determined by solving the eikonal 

equation. The implementation of such a two point boundary value ray tracer for 

sound field simulations through an austenitic weld is described and its efficiency as 

well as the obtained results are compared to those of a forward ray tracer. The 

results are validated by comparison with experimental results and commercially 

available UT simulation tools. 

 As an application, we discuss an implementation of the method for SAFT 

(Synthetic Aperture Focusing Technique) reconstruction. The ray tracer calculates 

the required travel time through the anisotropic columnar grain structure of the 

austenitic weld. There, the formulation of ray tracing as a boundary value problem 

allows a straightforward derivation of the ray path from a given transducer position 

to any pixel in the reconstruction area and reduces the computational cost 

considerably. 

Introduction  

Ultrasonic testing of inhomogeneous anisotropic materials, e.g., austenitic welds, has been 

a subject of increasing interest in recent years [1-6]. A main difficulty in the application of 

ultrasonic inspection techniques to anisotropic materials lies in the fact that in such 

materials sound velocity and refraction index depend on the phase direction of an incident 

wave, and phase direction and direction of energy propagation are no longer identical. This 

can lead to effects like beam skewing, beam splitting, or focusing and defocusing of sound 

fields [7, 8]. Inhomogeneous anisotropic media might consist of several homogeneous 

layers of different anisotropic materials or, as is the case for austenitic welds [7], be a 

structure with continuously varying anisotropic properties. In the latter case, ultrasonic 
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waves will no longer propagate in a straight line or even piecewise straight trajectory, but 

along a curved path with varying sound velocity. Taking the aforementioned effects into 

account is necessary when evaluating data acquired by ultrasonic inspections of such 

materials.  

 The approach to use acoustic ray tracing to obtain information about 

inhomogeneous anisotropic structures, namely austenitic welds, was mainly developed in 

the 1980s. Basically, the comparison of simulated and measured travel times between a 

transducer and a receiver is used for fitting a parametric model of anisotropies or material 

defects. Since then, a variety of publications deal with different aspects of the method. One 

feature common to most of the work is the use of forward propagation of rays, 

mathematically speaking as initial value problems for ordinary differential equations. As 

the ray paths and hence their end points are not known in advance, many rays have to be 

computed in order to cover all receiver positions. 

 Here, we consider the formulation of the ray tracing problem as a two point 

boundary value problem as is common in isotropic seismic inversion [9, 10]. As both start 

and end point of the rays are prescribed, comparatively few boundary value problems need 

to be solved. 

1. Boundary Value Ray Tracing in Layered Media 

1.1 Mathematical Model  

In inhomogeneous anisotropic media, the ray tracing ordinary differential equations 

(ODEs) are given as 
𝑑𝑥𝑖

𝑑𝜏
= 𝑎𝑖𝑗𝑘𝑙𝑝𝑙𝑔𝑗
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𝑔𝑘
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. 

Here, 𝑎𝑖𝑗𝑘𝑙 are the density normalized elastic parameters, 𝑥 is 3D-position in Cartesian 

coordinates, 𝜏 denotes the travel time of the wave under consideration, and 𝑝 = ∇𝜏 is called 

slowness vector. The eigenvectors of the Christoffel matrix Γ𝑖𝑗 = 𝑎𝑖𝑗𝑘𝑙𝑝𝑗𝑝𝑙 are denoted by 

𝑔(𝑚), 𝑚 = 1,2,3. Throughout the paper we use the Einstein summation convention for 

brevity. 

For many applications it is of special interest to find one specific ray, connecting a 

sender and a receiver with known positions 𝑥𝑆, 𝑥𝑅, such that the initial slowness vector 𝑝0 

is to be determined. Mathematically, this is a two-point boundary value problem consisting 

of the ray tracing system above, together with boundary conditions 

𝑟(𝑦(0), 𝑦(𝑇)) =  (
𝑥(0) − 𝑥𝑆

𝑥(𝑇) − 𝑥𝑅
) , 

where 𝑦 = (
𝑥
𝑝). The unknown time 𝑇 when the ray reaches the receiver, can be handled by 

transforming the system to a fixed time interval 𝑠 ∈ [0,1] instead of 𝜏 ∈ [0, 𝑇] and adding 

one equation for the constant final time 𝑇. For the required seventh boundary condition in 

this formulation we choose to prescribe an initial magnitude of the slowness vector, 

assuming the sender to be in an isotropic material with speed of sound 𝑣. 

In layered structures, like dissimilar welds, the elastic parameters 𝑎𝑖𝑗𝑘𝑙 are 

discontinuous at the material boundaries. When the ray arrives at such an interface, 

refraction occurs, such that the slowness vectors of transmitted and reflected waves have to 

be computed. Refraction into an isotropic medium can be easily handled by computing 
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𝑝 = 𝑝 − [𝑝𝑇𝑛 ± (�̃�−2 + 𝑣−2 + (𝑝𝑇𝑛)2)
1
2] 𝑛, 

where the interface normal 𝑛 is oriented against the incident wave, and 𝑝, �̃� denote the 

refracted slowness vector and the wave speed of the generated refracted wave. The plus 

sign corresponds to the transmitted wave, the minus sign gives the reflected wave. The 

relation holds for any wave type (compressional or shear). For refraction into an anisotropic 

medium the computations are more involved and require the solution of an algebraic 

equation of sixth order. We do not repeat the details here but refer to the literature, e.g., [11, 

12]. 

 The formulation as an ODE-boundary value problem allows to incorporate 

continuously varying elastic parameters without the need for an artificial discretization of 

the weld into layers or cells. 

1.2 Solution method  

The solution of such system can be computed numerically using shooting or collocation 

methods [13]. The simple single shooting aims at finding an initial value 𝑥0, 𝑝0 such that 

the corresponding solution of the initial value problem satisfies the terminal boundary 

conditions. This is done by finding a zero of the–in general nonlinear–boundary condition 

using Newton's method. The required derivatives can either be computed using the 

variational equations derived from the initial value problem [14], or with finite differences. 

As this information is required for amplitude computations as well, the computational 

overhead for the shooting method is small. 

1.3 Numerical Results 

For testing the proposed method, as well as for SAFT reconstruction in Section 2, we 

consider a specimen consisting of ferritic steel with an attached buffer, joined by a 

dissimilar weld to a component of austenitic steel. On top of the object, a perspex layer is 

added to account for the perspex wedge of the transducers used in the experiments. To 

describe the crystal orientation in the weld, we use the Ogilvy model [15]. See Figure 1 for 

a sketch. For the isotropic base materials, longitudinal sound velocities of 5619 m/s for 

austenitic and 5935 m/s for ferritic steel were used. In the perspex zone, the sound velocity 

was set to 2730 m/s. The elastic constants of weld and buffer material are (in GPa) given as 

𝐶11 = 247.25,  𝐶12 = 91.75,  𝐶13 = 133, 𝐶33 = 206,  𝐶44 = 119, 𝐶66 = 77.75, with 

density 7980 kg/m
3
. More details can be found in [6]. 

 For the ODE formulation of the boundary value ray tracing, we use the continuously 

varying crystal orientations directly. As a comparison, we also consider a layer model, 

where the weld is discretized into layers of constant grain orientation. In Figure 2, we 

exemplarily show five rays computed with the continuous ODE model and the layer model 

in a cross section of the weld. Small differences are visible inside the weld, as expected. 

Two of the plotted rays differ already inside the isotropic region and the buffer, which is 

due so slightly differing paths in y-direction (along the weld, not plotted here). In Figure 3, 

the 𝐿2(0, 𝑇; ℝ3)-norm of the difference of the 𝑥-component (position) between the 

continuous ODE solution and its approximation by the layered structure model with 

increasing number of layers. With about 25 layers, the accuracy of the layer model matches 

the prescribed tolerances of the ODE solver, with an average 0.1mm deviation between 

𝑥(𝑡) of continuous and layer model. 
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Fig. 1. Sketch of the considered geometry. The height of the weld is 32mm with an additional 6mm perspex 

layer. The buffer has a layback angle of 11° and a constant crystal orientation of 82°, the weld has a layback 

angle of 8° and the crystal orientation given by the Ogilvy model with parameters 

𝑇 = (−0.5614, 0.9266), 𝑎 = (5.6574, 3.9685), 𝜂 = 1. The extension of the weld is 9.945 mm at the top and 

(5.9825 mm, 7.17 mm) at the bottom, right and left of the weld center. The x-coordinates of the buffer are 

10.7 mm left of the weld center at the top, and 11.39 mm at the bottom. 

 
Fig. 2. Comparison of boundary value ray tracing using a layer model (green) and a continuous model for the 

for the grain orientation (red) along a cross section of the specimen. As expected, small differences between 

the layer model and the ODE solution are visible inside the weld. 
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Fig. 3.  L

2
-norm of the difference between continuous solution of the boundary value problem and its 

approximation by the layer mode with increasing number of layers for the second from right ray in Figure 2. 

The computational cost of boundary value ray tracing is considerably higher than for initial 

value problems, as it involves derivative computations and a Newton iteration to satisfy the 

boundary conditions. Computing the required Jacobian matrix for the seven components of 

the ray tracing system involves the computation of 49 additional rays. However, as soon as 

not only the time of flight is of interest, but the amplitudes at a receiver position, this matrix 

is needed anyway. Thus, the computational overhead is determined by the number of 

required Newton steps. This number strongly depends on the initial guess for the ray, and, 

in our numerical experiments, varied between five and 40, where the prescribed accuracy 

for finding a zero of the boundary condition was a distance of 1 μm. If not single rays are 

to be computed, but a scan of some region of interest (given by some set of receiver 

positions), the average number of Newton steps can be reduced by using the last computed 

ray as an initial guess for solving the boundary value problem for the next receiver position. 

For example, scanning along the 𝑧-axis for fixed (𝑥, 𝑦)-coordinates of a receiver, the 

average number of Newton iterations was reduced from 21.7 to 2.3 per z-coordinate, with 

one Newton iteration taking on average 1.3 s. For scans along the 𝑥- and 𝑦-axis similar 

reductions in iteration counts were obtained. 

2. Combination with SAFT 

2.1 SAFT 

The synthetic aperture focusing technique (SAFT) is an imaging technique used in 

ultrasonic inspection. It allows a straightforward interpretation of measured data and offers 

a higher detectability of flaws compared with B-scan images by improving the SNR [16]. 

The basic idea is to move the transducer over the surface and take pulse echo measurements 

(A-scans) from different positions along the path. The region of interest is discretized into a 

grid of cells where all cells are initialized with a value of 0. For a given cell the times of 

flight to the different transducers at sender and receiver positions is calculated and the 

corresponding amplitudes found at these times in the respective A-scans are added to the 

cell value. If a reflector is present within a cell, the signals will add up constructively, 

increasing the amplitude. Otherwise, they will be added with a random phase shift, 

canceling each other on average. Repeating this procedure for all cells within the region of 

interest will lead to an image of the flaws in that region. Details of the algorithm can be 
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found, e.g., in [17].  

 Calculating the times of flight between a defined transducer position and a 

particular cell within an inhomogeneous anisotropic structure is a nontrivial task and 

requires modeling of the sound field propagation through the structure by ray tracing or 

other means. A detailed description of the use of forward ray tracing in combination with 

SAFT (RT-SAFT) for the imaging of transverse cracks in austenitic and dissimilar welds 

can be found in [6]. The basic idea of RT-SAFT with forward ray tracing is to define a ray 

bundle emanating from the source point, trace each ray individually, calculate the times of 

flight along the ray paths and store them in a look up array for each cell the ray passes 

through. This look up array can then be used to determine the times of flight relative to 

each transducer position from which measurements were taken as long as the 

inhomogeneous anisotropic structure can be assumed to be invariant in scan direction 

(which is the case for weld inspections with scans along the weld run direction). When 

modeling the ray bundle, a sufficient number of rays has to be chosen to ensure that every 

cell within the region of interest is hit at least once. This means that cells close to the source 

point will be hit by a large number of rays while at a greater distance single cells might be 

missed entirely if focusing effects occur within the inhomogeneous anisotropic structure. 

 With the use of a two point boundary value ray tracer instead of simple forward 

modeling, we can specify start and end point of each ray. This allows us to ensure that the 

look up array is fully populated, i.e. the time of flight is calculated for each cell within the 

region of interest. Preventing gaps in the look up array ensures that all data taken from 

measurements that are relevant to the region of interest will be processed during the SAFT 

reconstruction which should have a positive impact on the quality of the SAFT image by 

avoiding needless loss of information about the region of interest. Furthermore, by 

choosing the endpoints of each ray appropriately, we can ensure that the times of flight are 

calculated between the source point and the exact center of the cell that is to be evaluated. 

Compared to taking the time of flight at a more or less random point within the cell through 

which a forward modeled ray passes, this allows for a more accurate SAFT reconstruction 

in the sense that phase shifts due to errors in times of flight are minimized, thus further 

enhancing the quality of the obtained image. 

 Additionally, an adaptive strategy for populating the travel time matrix is easily 

implemented. In a first step, the weld is discretized using large cells, such that only 

comparatively few rays have to be computed. These travel times can then be used in a 

SAFT reconstruction to determine a smaller region of interest. In this area, better 

approximations of the times of flight can be obtained using a finer discretization and a 

second ray tracing step for the new cells. As the previously computed neighboring rays can 

be used as a good initial guess, only very few Newton iterations will be required. 

2.2 Results and Discussion 

To verify the boundary value ray tracing approach it is compared to the initial value ray 

tracing. Therefore, a specimen that contains an artificial flaw (notch, 6 mm depth) was 

scanned via impulse-echo technique. The measured signal values are allocated to the 

volume cells as explained in section 2.1 resulting in the SAFT reconstructions shown in 

Figure 4. 
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Fig. 3.  Comparison of SAFT results using and the boundary value problem formulation (top) and a layer 

model with initial value ray tracing (bottom) for ray tracing. 

 

The reconstruction of a notch results in two spots where the summed signals gain local 

amplitude maxima: One at the base of the notch and one at its tip. Both models reconstruct 

the flaw in the correct depth (26 mm to 32 mm). For the boundary value ray tracing, the 

mapping of the flaw is better and the microstructure of the weld (e.g. grains) is better 

defined, while the initial value ray tracing produces a more diffuse reconstruction. The 

reason can be found in the calculation of the travel times: A ray that hits the center of each 

cell minimizes the error of the calculated travel times. 

 Compared to populating the travel time matrix with initial value ray tracing, where 

only 908 of 4680 cells are hit by a ray and thus have an associated time of flight, using the 

approach described in this paper allowed to obtain times of flight for 4592 cells. Only for 

cells close to the top surface (𝑧 = 0), no rays could be found, mostly due to total reflection 

of the ray at the perspex and buffer interfaces. On average, five Newton iterations were 

required per cell, with a computation time of 1.28 s per Newton iteration on an AMD 

Opteron 2.8 GHz, i.e. 0.0023 s per ray (as 7 + 49 initial value problems have to be solved, 7 

for the ray itself, 49 for the derivatives). As is to be expected, initial value ray tracing is 

computationally slightly cheaper, with 4.5 s per populated cell. The computation time for 

boundary value ray tracing can further be reduced using the adaptive strategy outlined 

above. 

 Another difference of both approaches is the coverage of the reconstruction plane. 

Here, the signals in depths above -15 mm contain no information, since the sound cones of 
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the measurement did not reach this area. By matching the modeling to the measurement 

parameter, the calculation time can be reduced further. 
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